INTERNATIONAL COLLEGE

VISION

The vision of International College (IC) is to empower learners of today to be global citizen leaders of tomorrow.

MISSION

The mission of International College is to empower learners to take initiative, think critically, and serve as role models in a global society. The curriculum aims for excellence at all levels and embraces the education of the whole person. Graduates of IC will have developed self-confidence, problem-solving and decision-making abilities as well as selfdiscipline, social and environmental responsibility, and an awareness of and respect for the connected nature of our global community.

Preschool Math Curriculum

VISION

La vision de L'International College (IC) est de permettre aux apprenants d'aujourd'hui de devenir des leaders et des citoyens du monde de demain.

MISSION

La mission de L'International College est de permettre aux apprenants de prendre des initiatives, de réfléchir de manière critique et de servir de modèles dans une société mondiale. Le programme vise l'excellence à tous les niveaux et inclut l'éducation de toute la personne. Les diplômés de L'IC auront développé des capacités de confiance en soi, de résolution de problèmes et de prise de décision, ainsi que l'autodiscipline, la responsabilité sociale et environnementale, la conscience et le respect de la nature connectée de notre communauté mondiale.

الرؤيا

الرسالة
تطمح مدرسـة الانترناشونـال كولدج إلـى تمكين متعلميها من الأخذ بزمام المبادرة والتّحلّّي بتفكير نقديّ كي يصبحوا نماذي يحتذى بها في مجتمع عالميّ. يهذف منهج المدرسة إلى التّفوّق على جميع الأصعدة ويشجّع على بناء الثّخصيّة المتكاملة للمتعلّمين. يكتسب خرّيجو المدرسة الثّقة بأنفسهم ويطوّرون
 الإنضباط الذّاتيّ والمسؤوليّة تجاه المجتمع والبيئة، كما اليكتسبون الوعي لفهـم طبيعة النّرابط المتشعّب في مجنمعنا

$$
\text { (16) 耳 aefe } \mathrm{CIS}=5 \mathrm{C}
$$

INTERNATIONAL COLLEGE

TABLE OF CONTENTMATH STRANDSPAGE NUMBER
Data Handling Page 3
Measurement Page 5
Shape and Space Page 7
Pattern and Function Page 9
NumberPage 11

DATA HANDLING

Conceptual Understanding

By the end of preschool students will understand that:

- We collect information to make sense of the world around us.
- We pose questions to help us collect information.
- We can collect and organize data in different ways and for different purposes.
- We can represent data in different ways (graphs, charts, sets, tables, and other tools) to help us answer questions and make sense of the data collected.
- We can solve problems, make predictions, and draw conclusions based on data we have collected and graphed.

Nursery	KG1	KG2
DH.Nr-1. With guidance collect data through observations and experimentation DH.Nr-2. Describe real objects and people by attributes DH.Nr-3. Identify similarities and differences between real objects and people DH.Nr-4. Sort objects and people into categories (sets) by one attribute DH.Nr-5. Label categories (sets) according to a specific criterion. DH.Nr-6. With support, use sets to interpret organized data by comparing quantities using mathematical language (few, a lot, more, less, same).	DH.KI-1. Collect data through observations, experimentation, and interviews DH.KI-2.Organize and label data about people and objects into categories by sorting (shape, color, size, materials, action...) DH.KI-3.according to one attribute Record data using symbols and tally marks DH.KI-4. \quadRepresent data in concrete graphs and pictographs DH.KI-5.Read and interpret concrete graphs and pictographs by comparing quantities (more than, less than, equal to, most, least, less, more).	DH.KII-1. Ask questions that can be answered through data collection (observations, experiments, and interviews) DH.KII-2. Organize data about people or objects by sorting according to one or more attributes, and describe by labeling the DH.KII-3. Record data using methods of their criteria choice (Yes/No, checkmarks, tally DH.KII-4.marks) Represent data by creating concrete graphs, pictographs, and simple bar graphs

		asking and answering questions and drawing conclusions
Use Venn diagrams (two circles) to		
explore relationships between data.		

DATA HANDLING GLOSSARY

Attribute: A characteristic related to the physical appearance of an object, person, or occurrence. ATTRIBUTE
Bar graph: A bar graph is a graph that presents categorical data with rectangular bars with heights or lengths proportional to the values that they represent.
The bars can be plotted vertically or horizontally. BAR GRAPH
Concrete graph: A graph on which objects are used to represent pieces of information; for example, stacking blocks could be used to represent cars, and paper squares could be used to represent animals. CONCRETE GRAPH

Pictograph: A graph that uses pictures or symbols to represent one or more data values. PICTOGRAPH
Set: A collection of objects (elements). SET
Sort: to arrange in groups; separate according to criteria. SORT
Tally mark: A visual representation of groups of 5 . One vertical line is made for each of the first four numbers; the fifth number is represented by a diagonal line across the previous four. TALLY MARK

Tally table: A table that uses tally marks to count data and record frequencies. TALLY TABLE
Venn diagram: A diagram that consists of two or more sets that often overlap in the middle. A criterion is set for each set and objects or numbers are sorted and placed into sets according to the criteria. VENN DIAGRAM

MEASUREMENT

Conceptual Understanding

By the end of preschool students will understand that:

- We use measurement in our daily lives to describe, compare and communicate our thinking.
- Objects and shapes have measurable attributes that can be compared and communicated in different ways.
- We use different tools to measure different things.
- The attribute we are measuring determines the tool we will use and therefore the unit of measurement.
- Measurement attributes can be communicated by using comparative and descriptive language.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Nursery} \& \multicolumn{2}{|r|}{KG1} \& \multicolumn{2}{|r|}{KG2} \\
\hline \multirow[t]{3}{*}{M.Nr-1.
M.Nr-2.} \& \multirow[t]{6}{*}{\begin{tabular}{l}
Describe objects and shapes by measurable attributes (size, length, weight: big, tall, long, big, small, heavy). \\
Compare and order two objects according to their measurable attribute length, height, size, weight, (longer, taller, bigger, heavier,....). \\
Describe and sequence up to three events in their daily routine using words and phrases relating to chronology and time, for example, before, after, bedtime, storytime, first, next, then, last.. \\
With support, begin to read the date on a calendar.
\end{tabular}} \& M.KI-1. \& Select an attribute to measure (height, length, mass) and determine a non-standard unit of measure. \& M.KII-1. \& Select an attribute to measure (height, length, mass) and justify the appropriateness of the non-standard unit of measure. \\
\hline \& \& \multirow[t]{2}{*}{M.KI-3.} \& an object, space, and materials. Measure and record the measurable \& M.KII-2. \& Estimate the measurable attributes of an object, space, materials. \\
\hline \& \& \& \begin{tabular}{l}
attributes of objects, space, materials using non-standard units. \\
Compare and order three or more
\end{tabular} \& M.KII-3. \& Measure and record the measurable attributes of objects, space, and materials using non-standard units. \\
\hline M.Nr-3.

M.Nr-4. \& \& M.KI-5. \& | objects, spaces, materials according to a measurable attribute (e.g., determine which of two other containers holds the most water). |
| :--- |
| Describe and sequence up to five events | \& M.KII-4. \& Compare and order four or more objects, spaces, materials according to a measurable attribute using concrete material (e.g., determine which of three other containers holds the most water).

\hline M.Nr-4. \& \& \& in their daily routine using words and phrases relating to chronology and time, for example, before, after, bedtime, story time, and ordinal numbers (first, second..) then, last \& M.KII-5. \& Describe and sequence up to seven events in their daily routine using words and phrases relating to chronology and time (e.g., before, after, bedtime, story time, ordinal numbers: first, second..).

\hline \& \& M.KI-6. \& Read the date on a calendar, and use a calendar to identify days, weeks, months, holidays, and seasons. \& M.KII-6. \& Use the calendar/schedule, to measure passage of time (after three day we have a holiday, the easter break is 12 days long, my

\hline
\end{tabular}

E

MEASUREMENT GLOSSARY

Attribute: Attribute: A characteristic related to the physical appearance of an object, person, or occurrence. ATTRIBUTE
Estimate: To roughly calculate, or make a reasonable guess.
Non-standard unit: A unit or object that is used for measurement but isn't adopted as a measurement standard. NON STANDARD UNIT
Order: Arrange according to length, height, mass, capacity. ORDER
Sequence: To arrange in a chronological order.

SHAPE AND SPACE

Conceptual Understanding

By the end of preschool students will understand that:

- Our world is composed of shapes and figures that are put together in particular ways for particular purposes.
- Shapes and figures have different properties and attributes.
- We can understand and describe our world by looking at how shapes and figures work together.
- We can use positional language to describe an object's location.
- Many of the properties in two-dimensional shapes can also be found in three-dimensional figures.
- The strategy of decomposing and recomposing is useful when thinking about shapes and space.

	Nursery		KG1		KG2
SS.Nr-1.	Identify the relative locations of objects using positional language for example: inside, outside, above, below, next to, behind, in front of, up, down. Identify shapes in the environment Describe 2D shapes (squares, circles, triangles, rectangles) using informal and mathematical language: sides, corners; straight, flat, round	SS.KI-1.	Identify relative positions of objects in space using positional language (e.g., besides, inside, next to, close to, above, below, apart).	SS.KII-1.	Describe the relative positions of these objects using positional language (e.g., above, below, beside, in front of, behind, and next to).
$\begin{aligned} & \text { SS.Nr-2. } \\ & \text { SS.Nr-3. } \end{aligned}$		SS.KI-2.	Identify and describe various 2D shapes (squares, circles, triangles, rectangles) according to their geometric properties.	SS.KII-2.	Identify geometric shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid").
		SS.KI-3.	Compare 2D shapes according to attributes (length, color, texture, ability to roll) and geometric properties (Number of sides, vertices).	SS.KII-3.	Identify and describe 2D and 3D shapes (squares, circles, triangles, rectangles,) according to their geometric properties (regardless of their orientation or
		SS.KI-4.	Compose figures using 2D shapes		overall size).
		SS.KI-5.	Create and represent three-dimensional shapes (ball/sphere, square box/cube, tube/cylinder) using various manipulative materials (such as sticks, blocks, pipe	SS.KII-4.	Sort 2D and 3D shapes according to attributes (length, color, texture, ability to roll) and geometric properties (Number of sides, vertices, faces).
		SS.KI-6.	cleaners, pattern blocks). With guidance, construct models in the world by building shapes from components.	SS.KII-5.	Compare 2D and 3D shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides, vertices/corners, number of faces,

,

		edges) and other attributes (e.g., having sides of equal length). Construct models in the world by building shapes from components. Compose simple shapes to form larger
shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?"		

SHAPE AND SPACE GLOSSARY

Attribute: A characteristic or feature of an object or shape (e.g., length, area, colour, texture, ability to roll). ATTRIBUTE

Compose: Order or arrange parts to form a whole. In geometry, two dimensional shapes and three dimensional objects can compose larger shapes and objects.

Geometric property: An attribute that remains the same for a class of objects or shapes. For example, all triangles have three sides.
TWO DIMENSIONAL PROPERTIES THREE DIMENSIONAL PROPERTIES
Geometric shapes: Shapes that are in two dimensions (pictures or drawings) and in three dimensions (objects). GEOMETRIC SHAPES
Positional language: Language that is used to describe the relative locations of objects and people. POSITIONAL LANGUAGE
Relative location: The position of something, such as a place, an object, or a point in comparison to something else.
Three dimensional shape (3D): An object that has the dimensions of length, width, and depth/height. THREE DIMENSIONAL 1 THREE DIMENSIONAL 2
Two dimensional shape (2D): A shape that has the dimensions of length and width. TWO DIMENSIONAL 1 TWO DIMENSIONAL 2

PATTERN AND FUNCTION

Conceptual Understanding

By the end of preschool students will understand that:

- Patterns are predictable.
- There are specific ways we can describe patterns.
- Patterns always have an element of repetition.
- The core of a pattern helps us to predict what comes next.
- Changing something to the front of a pattern affects what we do in other parts.

Nursery	KG1	KG2
PF.Nr-1. Identify and describe repeating patterns in everyday contexts (ex: patterns in nature such as morning-night, the four seasons, patterns on animals, the pattern on a piece of clothing; the pattern on the floor tiles) PF.Nr-2. Identify the smallest unit, the core, of simple repeating patterns ($A B-A A B-A B B$) PF.Nr-3. Extend simple repeating patterns including filling in missing elements of a repeated pattern PF.Nr-4. Notice and correct an error in simple repeating patterns. PF.Nr-5. Create simple repeating patterns	PF.KI-1. Identify and describe repeating patterns in everyday contexts (ex: the pattern in a calendar or in a schedule, life cycles..) PF.KI-2. Determine the unit, the core, and use it to extend repeated patterns (ABC, PF.KI-3. AABB, ABCD, etc) Use the unit, the core, to make and justify predictions and identify missing elements in repeated patterns	PF.KII-1. Identify and describe the pattern rule in a variety of patterns (linear growing patterns, numeric patterns, linear shrinking pattern), including patterns in everyday contexts PF.KII-2. Identify the pattern of the counting system PF.KII-3. Determine pattern rules and use them to extend a variety of patterns PF.KII-4. Use pattern rules to make and justify predictions and identify missing elements in variety of patterns PF.KII-5. Describe and represent patterns within numbers up to 20 PF.KII-6. Create and represent a variety of patterns using movements, sounds, objects, shapes, letters, and numbers

PATTERN AND FUNCTION GLOSSARY

Element: A specific item (e.g., object, shape, number) in a pattern. The elements in the following pattern are a circle and a heart.

Growing pattern: A pattern that involves an increase from term to term (e.g., AB, AABB, AAABBB). A growing pattern that has a constant increase from term to term, such as $3,77,11,15, \ldots$, is an example of a linear growing pattern. A growing pattern that does not have a constant increase from term to term, such as 3 , $6,12,2, .$. , is an example of a non-linear pattern. GROWING PATTERN

Numeric pattern: A pattern composed of numbers (e.g., 5, 10, 15, 20). NUMERIC PATTERNS
Pattern: An arrangement of elements that can be defined by a rule. See repeated patterns, growing patterns, numeric patterns, shrinking patterns. PATTERN 1 - PATTERN 2

Pattern core: A basic string of elements that repeats in a pattern. In an $A B B, A B B, A B B$ pattern, the core is ABB. See also element. PATTERN CORE
Pattern rule: A description of how a pattern repeats, grows or shrinks. For example, the pattern rule for the growing pattern $3,7,11,15, .$. Is "begins at 3 , and repeatedly adds 4".

Repeated pattern: A pattern in which a core unit repeats continuously (e,g, $A B, A B, A B)$. See also pattern core.

Represent: In patterning, to represent is to transform one representation of a pattern into another representation. For example, the pattern "red, blue, red blue, red, blue" could be translated to "clap, jump, clap, jump, clap, jump"; both patterns show an AB structure.

Shrinking pattern: A pattern that involves a regression (e.g., a decrease in the number of elements) from term to term (e.g., $A A A A B B B, A A A B B, A A B, A)$.

C

NUMBER

Conceptual Understanding

By the end of preschool students will understand that:

- We use numbers in our lives to communicate/represent value.
- We can use objects, pictures, symbols, and/or words to represent number and quantity.
- There are many ways to count and each way to count has a proper sequence.
- Quantity can be represented in many ways.
- Numbers can be taken apart (decomposed) and put together (recomposed).
- Composing and decomposing numbers can help us solve problems.

Nursery	KG1	KG2
A-Number Sense	A-Number Sense	A-Number Sense

A-Number Sense

I. Counting
N.AI. Nr-1. Rote count beyond 10 by ones
N.AI. Nr-2. Count forward by 1s beginning from a given number within the known sequence 0-10 (instead of having to begin at one).
N.AI. Nr-3. Count using one-to-one correspondence to tell the number of objects (5 things arranged in a line, a rectangular array, or as many as 3 things in a scattered configuration)
N.AI. Nr-4. Given a number from 1-5, count out that many objects.
II. Identifying, Reading, Representing, and Estimating Numbers
N.All.Nr-1. Identify and read the whole number up to and including 5 (standard form)
N.All.Nr-2. Write numbers from 0 to 5 (standard form)

A-Number Sense

I. Counting

N.AI.KI-1. Rote count beyond 20 by ones
N.AI.KI-2. Count forward by 1s beginning from a given number within the known sequence $0-20$ (instead of having to begin at one).
N.AI.KI-3. Count using one-to-one correspondence to tell the number of objects (10 things arranged in a line, a rectangular array, or a circle, or as many as 7 things in a scattered configuration)
N.AI.KI-4. Given a number from 1-10, count out that many objects.

II. Identifying, Reading, Representing, and Estimating Numbers

N.AII.KI-1. Identify and read the whole number up to and including 10 (standard form and word form)

A-Number Sense

I. Counting
N.AI.KII-1. Rote count to 100 by ones and tens
N.AI.KII-2. Count forward by 1s beginning from a given number within the known sequence 0-100 (instead of having to begin at one)
N.AI.KII-3. Count by $2 \mathrm{~s}, 5 \mathrm{~s}$ (skip counting)
N.AI.KII-4. Count using one-to-one correspondence to tell the number of objects (20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration)
N.AI.KII-5. Given a number from 1-20, count out that many objects.

II. Identifying, Reading, Representing, and Estimating Numbers

N.AII.KII-1. Identify and read the whole number up to and including 20 (standard form and word form)
aefe

\because
N.All.Nr-3. Represent a number of objects 0-5 (with 0 representing a count of no objects) with a written numeral and number finger count
N.AII.Nr-4. Recognizing small quantities (0-3) without counting (subitizing)

III. Ordering and Comparing

N.All.Nr-1. Identify the numbers that are before and after a given number (0-5), demonstrating the understanding of 'one more than/one less than' relationship between consecutive numbers.
N.AllI.Nr-2. Order numbers in an increasing and decreasing order (0-5)
N.AIII.Nr-3. Identify whether the number of objects in one group is more than, less than, or the same as the number of objects in another group (groups up to 5)

B-Operational Sense

N.B.Nr-1. Compose and decompose whole numbers up to and including 5 using some tools and strategies (concrete objects, five frames, numicons)
N.B.Nr-2. Use concrete objects to model real-world addition (putting together) and subtraction (taking away) problems up to and including 5
N.All.KI-2. Write numbers from 0 to 10 (standard form).
N.All.KI-3. Recognize and name numbers from 0-10 in word form.
N.AII.KI-4. Represent a number of objects 0-10 (with 0 representing a count of no objects) in a variety of ways (tallies, numerals, five frames, number finger count, symbols, ten frames, numicon)
N.All.KI-5. Recognizing quantities (0-5) without counting (subitizing)
N.AII.KI-6. Identify and use ordinal numbers first through fifth

III. Ordering and Comparing

N.AIII.KI-1. Identify the numbers that are before and after a given number (0-10), demonstrating the understanding of the 'one more than/one less than' relationship between consecutive numbers.
N.AllI.KI-2. Order numbers in an increasing and decreasing order (0-10)
N.AllI.KI-3. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group (groups up to 10)

B-Operational Sense

N.B.KI-1. Compose and decompose whole numbers up to an including 10 using a variety of tools and strategies (concrete objects, number bonds, numicons)
N.B.KI-2. Use concrete objects to model real-world addition (putting together)
N.All.KII-2. Write numbers from 0 to 20 (standard form) and from 0-10 in word form.
N.AlI.KII-3. Represent a number of objects 0-20 (with 0 representing a count of no objects) using a variety of ways (tallies, numerals, five frames, number finger count, symbols, ten frames, numicon, position on a number line)
N.AII.KII-4. Recognizing small quantities (0-10) without counting (subitizing)
N.AII.KII-5. Identify and use ordinal numbers first through tenth
N.AII.KII-6. Write ordinal numbers first through tenth

III. Ordering and Comparing

N.AIII.KII-1. Identify the numbers that are before and after a given number (0-20), demonstrating the understanding of the 'one more than/one less than' relationship between consecutive numbers.
N.AIII.KII-2. Order numbers in an increasing and decreasing order (0-20)
N.AIII.KII-3. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group (groups up to 20)

B-Operational Sense

N.B.KII-1. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1)$.

NUMBER GLOSSARY

Addition: The process of putting together two or more numbers or quantities to get a total sum. ADDITION
Compose: Order or arrange parts to form a whole. In geometry, two dimensional shapes and three dimensional objects can compose larger shapes and objects. COMPOSE NUMBERS

Concrete objects : Hands on manipulatives as opposite to pictures, numbers or words. CONCRETE OBJECTS
Consecutive numbers: Numbers that follow an unbroken number sequence. CONSECUTIVE NUMBERS

Count: Recite a sequence of numbers in the correct order without referring to objects or quantities. COUNT
Decompose: The taking apart of numbers into two or more parts. For example, 13 can be decomposed as 10 and 3 or 6 and 7 , or 6 and 6 and 1 , and so on. DECOMPOSE NUMBERS

Equation: A mathematical statement that contains an equal sign showing that two expressions are equal (e.g. 5+6=11 or 5+5+1=11) EQUATION
Five frame: A 1 by 5 array onto which counters or dots are placed, to help students relate a given number to 5 (e.g., 7 is 2 more than 5) and recognize the importance of 5 as an anchor in our number system. FIVE FRAME

Number bond: A visual representation that shows the pairs of numbers that make up a given number. Also referred to as "number pairs". NUMBER BONDS
Number finger count: A visual representation of numbers using the hands. NUMBER FINGER COUNT
Number line: A line that represents a set of real numbers using a set of points. The increments on the number line reflect the scale. NUMBER LINE
Numeral: A symbol or name that stands for a number (e.g., 3, 49, and twelve are all numerals). NUMERAL
Numicon: A system of flat plastic shapes with holes in them. Each shape represents a number from one to 10. NUMICON 1 , NUMICON 2
One-to-one correspondence: The correspondence of one object to one symbol or picture. In counting, one-to-one correspondence is the idea that each object being counted must be given only one count. ONE-TO-ONE CORRESPONDENCE

Order numbers: Ordering numbers according to their "how muchness". Numbers can be ordered in ascending order - from least to greatest - or can be ordered in descending order - from greatest to least. ORDER NUMBERS ORDER

Ordinal numbers: Numbers that talk about the position of objects. See Cardinal vs Ordinal . ORDINAL NUMBERS 1 ORDINAL NUMBERS 2
Reading numbers: A skill that involves interpreting numbers as a quantity when they are expressed in words or numerals, or represented using physical quantities or diagrams.

Representing numbers: Numbers can be represented in a variety of ways including the use of counts such as tallies, position/distance on a number line, in words, and using mathematical learning tools such as ten frames. REPRESENTING NUMBERS

Rote count: The ability to recite numbers in order from memory. ROTE COUNT
Skip count: Count forward or backward by multiples. SKIP COUNT

Standard form: A way in which the concept of numbers can be written in decimal notation (e.g. 37) / It is different from the word form (e.g., thirteen) or expanded form $(10+3)$. STANDARD FORM US DEFINITION

Subitizing: Being able to recognize the number of objects at a glance without having to count all the objects, such as recognizing the configuration of the five dots on a die representing 5. SUBITIZING

Subtraction: The process to take away one quantity from another. SUBTRACTION
Tallies/Tally mark: A visual representation of groups of 5. One vertical line is made for each of the first four numbers; the fifth number is represented by a diagonal line across the previous four. TALLY MARK

Ten frame: A 2 by 5 array onto which counters or dots are placed to help students relate a given number 1010 (e.g. 7 is 3 less than 10) and recognize the importance of using 10 as an anchor when adding and subtracting. TEN FRAMES

Whole numbers: A positive number, including zero, that has no decimal or fractional parts; for example, $15,7,23, \ldots$. WHOLE NUMBERS
Word form: A way in which the concept of numbers can be written. It involves expressing numbers using words rather than a standard notation. WORD FORM

Quantity: The "how muchness" of a number. An understanding of quantity helps students estimate and reason with numbers and is an important prerequisite to understanding place value, the operations and fractions. QUANTITY

